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1 Schröder–Bernstein: Statement and Proof

Theorem 1.1. If f : X → Y and g : Y → X are both injective for sets X and Y ,

then X and Y are numerically equivalent.

The idea is to partition X into X∞ ∩Xx ∩Xy, and Y into Y∞ ∩ Yx ∩ Yy.

Maps X∞ → Y∞, Xx → Yy and Xy → Yx may then be established as bijections.

Definition 1.1. For x ∈ X, the x-ancestry of x is the sequence, so long as it is

defined, given by {x, g−1(x), f−1(g−1(x)), . . . }.
Similarly the y-ancestry of y for y ∈ Y is given by {y, f−1(y), g−1(f−1(y)), . . . }

Note that the ancestry of a number may have only one element.

If for example, x ∈ X \ g(Y ), the x-ancestry of x is just the finite sequence {x}. Ancestries

may be infinitely long, in which case they may or may not repeat after some time. Also

note that a number a ∈ X ∩ Y has both an x-ancestry and a y-ancestry, although this is

not relevant for the proof.

Now the partitioning sets may be defined.

• Let X∞ be the set of all x ∈ X with infinite x-ancestry.

• Let Xx be the set of all x ∈ X with finite x-ancestry with odd length. That is to say,

the final element of the sequence is in the set X \ g(Y ).

• Let Xy be the set of all x ∈ X with finite x-ancestry with even length. That is to say,

the final element of the sequence is in the set Y \ f(X).

• Let Y∞ be the set of all y ∈ Y with infinite y-ancestry.

• Let Yx be the set of all y ∈ Y with finite y-ancestry with even length. That is to say,

the final element of the sequence is in the set X \ g(Y ).

• Let Yy be the set of all y ∈ Y with finite y-ancestry with even length. That is to say,

the final element of the sequence is in the set Y \ f(X).

Now we may define bijections.

• f : X∞ → Y∞ is a surjection, because ∀y ∈ Y∞, y has an immediate ancestor f−1(y) =

x, so ∃f(x) = y. It’s also trivially injective because f is injective.

• f : Xx → Yx is a surjection, because ∀y ∈ Yx, y has an immediate ancestor f−1(y) = x,

so ∃f(x) = y. It’s also trivially injective because f is injective.

• g−1 : Xy → Yy is a surjection, because ∀y ∈ Yy, g(y) has x-ancestry {g(y), y, f−1(y), . . . },
which is just g(y) appended to the y-ancestry of y, and so g(y) ∈ Xy. It fol-

lows that ∀y ∈ Yy, ∃x ∈ Xy s.t. g−1(x) = y. g−1 is also an injection because

g−1(x1) = g−1(x2) =⇒ g(g−1(x1)) = g(g−1(x2)) =⇒ x1 = x2
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Finally , let h(x) : X 7→ Y be defined like so:

h(x) =

{
f(x) x ∈ X∞ ∪Xx

g−1(x) x ∈ Xy

Because X∞, Xx and Xy form a partition, and each forms a bijection, the function as a

whole forms a bijection.

2 Comments

The Schröder–Bernstein theorem stands out as one of the harder proofs from the MT232P

module (Intro to analysis), likely due to the uniqueness of the proof structure as compared to

a standard contradiction/induction proof that would otherwise be employed when beginning

pure maths. The theorem is also interesting in that, depending on the context, it can seem

obviously true or very confusing. An alternate equivalent statement of the theorem is the

following:

Theorem 2.1. If a set X is numerically equivalent to a subset of the set Y , and

the set Y is numerically equivalent to a subset of the set X, then X is numerically

equivalent to Y .

After being introduced to uncountability of the reals, power set hierarchies, and sets

containing themselves, it did not seem obvious at all that this statement held. It seemed

likely, even, that there were two obtuse sets which could each contain and be in bijection

with parts of the other. Once you’ve been introduced to cardinalities and the orderings

thereon, the statement reads like so:

Theorem 2.2. For two sets X and Y , (|X| ≤ |Y |) ∧ (|Y | ≤ |X|) =⇒ (|X| = |Y |)

This statement draws a direct analogy to the reals and, when read in this form, seems

absolutely obvious. This does not help, however, because the proof of this statement is not

so obvious at all.

While I was taking the course, I found it quite difficult to write the proof in any satis-

factory way which felt both rigorous and concise. This is due, in large part, to an implicit

yet unreasonable assumption made in many of the proof statements: X ∩ Y = {}

This assumption does not need to be made for the theorem to hold, but it’s nonetheless

the intuitive picture upon which the proof is based. The real idea behind Xx and Yx is that

the ancestries halt in the set X. But of course, if may halt in an element which features

in both sets. What to do then? In my proof above I have separated the idea of ancestry

into x-ancestry and y-ancestry to explicitly make apparent the idea that a number does not

necessarily have a unique ancestry. This is also why the Xx is defined based on odd-length

ancestry, rather than on ancestry which halts in X.
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