
Scrumptious Scrumping & Matrix
Exponentiation
Recently, I wrote a set of Programming questions on hackerrank for the Maynooth
Halloween Programmathon (aka the Spookathon). I was particularly happy with the framing
for the task Scrumptious Scrumping, the fourth task in the main round.

However, people definitely struggled with the question. Moreover, there was a harder variant
of the question which nobody got during the contest. To start with, I'll go over the original
task, how to solve the initial variant of the question, and then how to handle the tougher
version.

Task statement

The contestants, being familiar with the character of Nimrod the mouse, were met with this
blurb:

"On his way to the Malicious Monster Mash, Nimrod traverses the deep dark woods.
Therein, he is met with a spooky orchard, host to an inconceivably devious array of apple
trees.

How many good apples does he have at the end of the n-th step?"

(This task was inspired by the real world actions of my teammate in procuring ingredients
for an apple crumble.)

The contestants are also given example inputs/outputs. So if n = 3, the answer is 3, if n = 5,
the answer is 8 and so on. Let's analyse this question.

To start, Nimrod holds 1 good apple. He throws the good apple at a tree, which causes
the tree to drop another good apple. However, his good apple is now a bad apple.

Nimrod now holds 1 good apple and 1 bad apple. Again, he throws his good apple at a
tree, which causes it to turn into a bad apple, and the tree drops a good apple. He also
throws his bad apple, which causes a tree to drop a good apple, however on impact the
bad apple explodes and disappears.

Nimrod now holds 1 bad apple and 2 good apples. He repeats this process, throwing all
of his apples at trees, where each bad apple explodes on impact, and each impact causes
a tree to drop a good apple. Two steps later, Nimrod holds 3 bad apples and 5 good
apples.

Solution

Consider the following 1-indexed arrays:

It should be apparent, then, that to solve the question is really to compute G[n], i.e., how
many good apples Nimrod has at step n. Because Nimrod starts with just 1 good apple,
which he throws his at a tree, turning into a bad apple, but which yields a good apple. So at
step one Nimrod has 1 good apple and one bad apple. Hence, G[1] = 1 and B[1] = 1. We can
follow this kind of reasoning to compute the first few values of G and B, shown below:

G = [1, 1, 2, 3, 5, 8, …]

B = [0, 1, 1, 2, 3, 5, …]

You might be able to spot here that B seems to just be G but with an extra 0 at the start, can
we show this? Well suppose we've calculated G[i] and B[i] for some step i. The question is,
how do we calculate G[i + 1] and B[i + 1], the next terms in the arrays?

Well, when Nimrod begins a step, he takes all his bad apples and throws them, all of which
are destroyed on impact. Then he takes all his good apples and throws them, at which point
they all become bad apples. So the only source of bad apples at step i + 1 are the good apples
at step i. Or, put simply, B[i + 1] = G[i]. So we can see here that B really is just a shifted
version of G. But what's G[i + 1]? Well, Nimrod gets good apples from any tree that any
apple has hit. At the start of turn i + 1, he throws G[i] good apples and B[i] bad apples, which
gives a total of G[i] + B[i] throws. Each throw gets a new good apple, so,
G[i + 1] = G[i] + B[i].

So we can answer the question using these rules:

G, an array where G[i] is how many good apples Nimrod has at step i.

B, an array where B[i] is how many bad apples Nimrod has at step i.

B[1] = 1,

G[1] = 1,

B[i + 1] = G[i],

G[i + 1] = G[i] + B[i].

Here's the working python3 code for this answer:

Something to note before I continue: The contestants were asked to print the answer modulo
1000000007, as the numbers grow exponentially. So, in truth, the second last line must be
rewritten as G[i + 1] = (G[i] + B[i])%1000000007 for full points.

While this does answer the question correctly, it risks missing something. Because B is just a
copy of G, there's no point in keeping it around. If we want to compute G[i + 2] for some step
i, we can do the following manipulations: G[i + 2] = G[i + 1] + B[i + 1], but we know
B[i + 1] = G[i]. Hence, G[i + 2] = G[i + 1] + G[i]. Or, in other words, each term of G is just
the sum of the previous two terms!

This should be clear from the example above: 1 + 1 = 2, 1 + 2 = 3, 2 + 3 = 5, 3 + 5 = 8, etc.
For those who recognise it, this is just the Fibonacci sequence. So this question was really
just asking the contestant to find Fn, the n-th Fibonacci number! So the standard code below
for fibonacci will give the correct answers:

(You may notice that to compute a given term we only need the two terms which came
before. With this in mind, you don't actually need to store the whole array for F , just store
the previous two values. This brings the memory complexity down significantly.)

n = int(input())

G = [0]*(n+1)

B = [0]*(n+1)

G[1] = 1

B[1] = 1

for i in range(1,n):

B[i+1] = G[i]

G[i+1] = G[i]+B[i]

print(G[n])

n = int(input())

F = [0]*(n+2)

F[0] = 1

F[1] = 1

for i in range(n):

F[i+2] = (F[i+1]+F[i])%1000000007

print(F[n])

Harder variant

The solution above works fine in the case where n is reasonably sized. However, if n were as
big as 109 (1 billion), the for-loop would take too long to run and the contestant would be met
with a "Time limit exceeded" result. In order to handle this, we'll need an optimisation trick.

The solution above is a bottom-up dynamic programming solution, with the recurrence
relation given by Fn + Fn+1 = Fn+2 and initial conditions F0 = 1, F1 = 1. The key to speeding
this up is to notice that the recurrence relation is linear.

That is to say, Fn+2 is just a simple linear combination of Fn and Fn+1. It would therefore be
reasonable to bring linear algebra into the equation. Namely, notice the following:

()() = () = ().

Hopefully you can see from the above expression that, by multiplying the vector () on

the left by the matrix (), we effectively "bump" the vector up to the next pair ().

What's more, we can do this as many times as we like:

()
2

() = ()() = ().

We can use this trick to get to the vector () from the starting vector ():

()
n

() = ().

So, to compute Fn, all we really have to do is to compute ()
n

, then multiply whatever

matrix you get by the vector () = (), the resulting vector will contain the answer Fn.

Computing powers quickly is a classic problem in competition programming. Here, the

matrix ()
n

 may be computed quickly using fast squaring, which gives the full solution

for the harder variant!

Here's a working python solution for this harder variant:

1 1

1 0

Fn+1

Fn

Fn+1 + Fn

Fn+1

Fn+2

Fn+1

Fn+1

Fn

1 1

1 0

Fn+2

Fn+1

1 1

1 0

Fn+1

Fn

1 1

1 0

Fn+2

Fn+1

Fn+3

Fn+2

Fn+1

Fn

F1

F0

1 1

1 0

F1

F0

Fn+1

Fn

1 1

1 0
F1

F0

1

1

1 1

1 0

n = int(input())

Multiply two 2-by-2 matrices together, take the answer mod 1000000007

def mat_mult(A, B):

return [[(A[i][0]*B[0][j]+A[i][1]*B[1][j])%1000000007 for j in [0,

1]] for i in [0,1]]

https://en.wikipedia.org/wiki/Exponentiation_by_squaring

This type of optimisation works anytime you have a finite linear recurrence relation. So, for
example, if you had to compute Ln, where Ln+4 = Ln + 2Ln+1 − Ln+3 was the recurrence

relation, you could do the exact same algorithm with the matrix acting on

the vector .

This technique even works with so-called inhomogeneous linear recurrences, like

Hn+2 = Hn+1 + Hn + 1, where you can use the matrix acting on the vector

.

Also, finally relating back to the Nimrod story, you may read the above matrix off in the
following way, as telling you how to get from one step to the next: The top row (1, 1) says that
the amount of good apples in the next step is equal to the amount of good apples in the
previous step plus the amount of bad apples in the previous step, and the bottom row (1, 0)

says that the amount of bad apples in the next step is equal to the amount of good apples in
the previous step.

Compute the fast-squaring algorithm

def fast_square(power):

if power == 0:

return [[1,0],[0,1]]

H = fast_square(power//2)

F = mat_mult(H, H)

return (F if power%2 == 0 else mat_mult([[1,1],[1,0]], F))

Answer is the first entry in the resulting matrix

print(fast_square(n)[0][0])

⎛⎜⎝−1 0 2 1

1 0 0 0

0 1 0 0

0 0 1 0

⎞⎟⎠⎛⎜⎝Ln+3

Ln+2

Ln+1

Ln

⎞⎟⎠ ⎛⎜⎝1 1 1

1 0 0

0 0 1

⎞⎟⎠⎛⎜⎝Hn+1

Hn

1

⎞⎟⎠

